Package: QuantRegGLasso 1.0.0

QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models

Implements an adaptively weighted group Lasso procedure for simultaneous variable selection and structure identification in varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates. The methodology, grounded in a strong sparsity condition, establishes selection consistency under certain weight conditions. To address the challenge of tuning parameter selection in practice, a BIC-type criterion named high-dimensional information criterion (HDIC) is proposed. The Lasso procedure, guided by HDIC-determined tuning parameters, maintains selection consistency. Theoretical findings are strongly supported by simulation studies. (Toshio Honda, Ching-Kang Ing, Wei-Ying Wu, 2019, <doi:10.3150/18-BEJ1091>).

Authors:Wen-Ting Wang [aut, cre], Wei-Ying Wu [aut], Toshio Honda [aut], Ching-Kang Ing [aut]

QuantRegGLasso_1.0.0.tar.gz
QuantRegGLasso_1.0.0.zip(r-4.5)QuantRegGLasso_1.0.0.zip(r-4.4)QuantRegGLasso_1.0.0.zip(r-4.3)
QuantRegGLasso_1.0.0.tgz(r-4.5-x86_64)QuantRegGLasso_1.0.0.tgz(r-4.5-arm64)QuantRegGLasso_1.0.0.tgz(r-4.4-x86_64)QuantRegGLasso_1.0.0.tgz(r-4.4-arm64)QuantRegGLasso_1.0.0.tgz(r-4.3-x86_64)QuantRegGLasso_1.0.0.tgz(r-4.3-arm64)
QuantRegGLasso_1.0.0.tar.gz(r-4.5-noble)QuantRegGLasso_1.0.0.tar.gz(r-4.4-noble)
QuantRegGLasso_1.0.0.tgz(r-4.4-emscripten)QuantRegGLasso_1.0.0.tgz(r-4.3-emscripten)
QuantRegGLasso.pdf |QuantRegGLasso.html
QuantRegGLasso/json (API)
NEWS

# Install 'QuantRegGLasso' in R:
install.packages('QuantRegGLasso', repos = c('https://egpivo.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/egpivo/quantregglasso/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda-Forge:

admmgroup-lassohigh-dimensionalquantile-regressionrcpprcpparmadilloopenblascpp

3.30 score 2 stars 2 scripts 161 downloads 11 exports 30 dependencies

Last updated 4 months agofrom:ae8aee56e1. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 03 2025
R-4.5-win-x86_64OKMar 03 2025
R-4.5-mac-x86_64OKMar 03 2025
R-4.5-mac-aarch64OKMar 03 2025
R-4.5-linux-x86_64OKMar 03 2025
R-4.4-win-x86_64OKMar 03 2025
R-4.4-mac-x86_64OKMar 03 2025
R-4.4-mac-aarch64OKMar 03 2025
R-4.3-win-x86_64OKMar 03 2025
R-4.3-mac-x86_64OKMar 03 2025
R-4.3-mac-aarch64OKMar 03 2025

Exports:awglawgl_omegacheck_predict_parametersorthogonize_bsplineplot_bic_resultplot_coefficient_functionplot_sequentiallyplot.qrglassoplot.qrglasso.predictpredictqrglasso

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangscalestibbleutf8vctrsviridisLitewithr