Package: SpatPCA 1.3.7
SpatPCA: Regularized Principal Component Analysis for Spatial Data
Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <doi:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.
Authors:
SpatPCA_1.3.7.tar.gz
SpatPCA_1.3.7.zip(r-4.5)SpatPCA_1.3.7.zip(r-4.4)SpatPCA_1.3.7.zip(r-4.3)
SpatPCA_1.3.7.tgz(r-4.4-x86_64)SpatPCA_1.3.7.tgz(r-4.4-arm64)SpatPCA_1.3.7.tgz(r-4.3-x86_64)SpatPCA_1.3.7.tgz(r-4.3-arm64)
SpatPCA_1.3.7.tar.gz(r-4.5-noble)SpatPCA_1.3.7.tar.gz(r-4.4-noble)
SpatPCA_1.3.7.tgz(r-4.4-emscripten)SpatPCA_1.3.7.tgz(r-4.3-emscripten)
SpatPCA.pdf |SpatPCA.html✨
SpatPCA/json (API)
NEWS
# Install 'SpatPCA' in R: |
install.packages('SpatPCA', repos = c('https://egpivo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/egpivo/spatpca/issues
admmcovariance-estimationeigenfunctionslassomatrix-factorizationpcarcpparmadillorcppparallelregularizationspatialspatial-data-analysissplines
Last updated 2 months agofrom:50143ac998. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win-x86_64 | OK | Oct 25 2024 |
R-4.5-linux-x86_64 | OK | Oct 25 2024 |
R-4.4-win-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 25 2024 |
R-4.3-win-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 25 2024 |
Exports:checkInputDatacheckNewLocationsForSpatpcaObjectdetrendeigenFunctionfetchUpperBoundNumberEigenfunctionsplot.spatpcapredictpredictEigenfunctionscaleLocationsetCoressetGammasetL2setNumberEigenfunctionssetTau1setTau2spatialPredictionspatpcaspatpcaCVspatpcaCVWithSelectedKthinPlateSplineMatrix
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadilloRcppParallelrlangscalestibbleutf8vctrsviridisLitewithr
Capture the Dominant Spatial Pattern with One-Dimensional Locations
Rendered fromdemo-one-dim-location.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2021-02-01
Started: 2021-01-01
Capture the Dominant Spatial Pattern with Two-Dimensional Locations
Rendered fromdemo-two-dim-location.Rmd
usingknitr::rmarkdown
on Oct 25 2024.Last update: 2023-11-13
Started: 2021-01-01
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Regularized Principal Component Analysis for Spatial Data | SpatPCA-package |
Display the cross-validation results | plot.spatpca |
Spatial predictions on new locations | predict |
Spatial dominant patterns on new locations | predictEigenfunction |
Regularized PCA for spatial data | spatpca |
Thin-plane spline matrix | thinPlateSplineMatrix |