--- title: "Capture the Dominant Spatial Pattern with One-Dimensional Locations" author: "Wen-Ting Wang" output: rmarkdown::html_vignette: fig_width: 6 fig_height: 4 vignette: > %\VignetteIndexEntry{Capture the Dominant Spatial Pattern with One-Dimensional Locations} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", tidy = "styler" ) ``` ## Objective We have two objectives 1. Demonstrate how **SpatPCA** captures the most dominant spatial pattern of variation based on different signal-to-noise ratios. 2. Represent how to use **SpatPCA** for one-dimensional data ## Basic settings #### Used packages ```{r message=FALSE} library(SpatPCA) library(ggplot2) library(dplyr) library(tidyr) library(gifski) base_theme <- theme_classic(base_size = 18, base_family = "Times") ``` #### True spatial pattern (eigenfunction) The underlying spatial pattern below indicates realizations will vary dramatically at the center and be almost unchanged at the both ends of the curve. ```{r} set.seed(1024) position <- matrix(seq(-5, 5, length = 100)) true_eigen_fn <- exp(-position^2) / norm(exp(-position^2), "F") data.frame(position = position, eigenfunction = true_eigen_fn) %>% ggplot(aes(position, eigenfunction)) + geom_line() + base_theme ``` ## Case I: Higher signal of the true eigenfunction #### Generate realizations We want to generate 100 random sample based on - The spatial signal for the true spatial pattern is distributed normally with $\sigma=20$ - The noise follows the standard normal distribution. ```{r} realizations <- rnorm(n = 100, sd = 20) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ``` #### Animate realizations We can see simulated central realizations change in a wide range more frequently than the others. ```{r, animation.hook="gifski"} for (i in 1:100) { plot(x = position, y = realizations[i, ], ylim = c(-10, 10), ylab = "realization") } ``` #### Apply `SpatPCA::spatpca` ```{r} cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn ``` #### Compare **SpatPCA** with PCA There are two comparison remarks 1. Two estimates are similar to the true eigenfunctions 2. **SpatPCA** can perform better at the both ends. ```{r} data.frame(position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1]) %>% gather(estimate, eigenfunction, -position) %>% ggplot(aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme ``` ## Case II: Lower signal of the true eigenfunction ### Generate realizations with $\sigma=3$ ```{r} realizations <- rnorm(n = 100, sd = 3) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ``` ### Animate realizations It is hard to see a crystal clear spatial pattern via the simulated sample shown below. ```{r, animation.hook="gifski"} for (i in 1:100) { plot(x = position, y = realizations[i, ], ylim = c(-10, 10), ylab = "realization") } ``` ### Compare resultant patterns The following panel indicates that **SpatPCA** outperforms to PCA visually when the signal-to-noise ratio is quite lower. ```{r} cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn data.frame(position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1]) %>% gather(estimate, eigenfunction, -position) %>% ggplot(aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme ```